Lecture 27

Dynamic Programming: Bellman-Ford (contd.), Activity-Selection Problem

Recurrence for SSSP

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

\

We are interested in dist(v,n — 1) for v € V(G)

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

\

If there is no path from s to v with at most i edges, then dist(v,i) = oo

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

\

We would like to develop a recurrence so that dist(v,i) = W.

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.
Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 1: One of the paths in § has at most i — | edges.

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.
Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 1: One of the paths in § has at most i — | edges.

Case 2: All the paths in § have exactly i edges.

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 1: One of the paths in § has at most 1 — | edges.

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 1: One of the paths in § has at most 1 — | edges. Then,

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 1: One of the paths in § has at most 1 — | edges. Then,
W = dist(v,i — 1)

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 1: One of the paths in § has at most 1 — | edges. Then,
W = dist(v,i — 1)

\

Clearly, dist(v,i — 1) > W is not possible.

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 1: One of the paths in § has at most 1 — | edges. Then,
W = dist(v,i — 1)

\

dist(v,i — 1) < Wis also not possible.

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 1: One of the paths in § has at most 1 — | edges. Then,
W = dist(v,i — 1)

\

dist(v,i — 1) < Wis also not possible. Otherwise, it will contradict.

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 1: One of the paths in § has at most 1 — | edges. Then,
W = distiv,i— 1) = dist(v,1)

\

dist(v,i — 1) < Wis also not possible. Otherwise, it will contradict.

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 1: One of the paths in § has at most 1 — | edges. Then,
W = distiv,i— 1) = dist(v,1)

\

dist(v,i — 1) < Wis also not possible. Otherwise, it will contradict.

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 2: All the paths in § have exactly i edges.

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 2: All the paths in § have exactly i edges. Let P be one of the pathsin §.

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 2: All the paths in § have exactly i edges. Let P be one of the pathsin §.

P ‘_>‘_>‘ ‘_>‘_>‘

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 2: All the paths in § have exactly i edges. Let P be one of the pathsin §.

P ‘_>‘_>‘ ‘_>‘_>‘

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 2: All the paths in § have exactly i edges. Let P be one of the pathsin §.

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 2: All the paths in § have exactly i edges. Let P be one of the pathsin §.

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 2: All the paths in § have exactly i edges. Let P be one of the pathsin §.

W = 0O+ w(u,v)

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 2: All the paths in § have exactly i edges. Let P be one of the pathsin §.

W = 0O+ w(u,v)

\

O =dist(u,i1 — 1)

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 2: All the paths in § have exactly i edges. Let P be one of the pathsin §.

W = 0O+ w(u,v)

\

Q =dist(u,1 — 1), "." a shorter path from s to u with at most i — 1 edges will contradict

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 2: All the paths in § have exactly i edges. Let P be one of the pathsin §.

W = 0O+ w(u,v)

\

Q =dist(u,1 — 1), "." a shorter path from s to u with at most i — 1 edges will contradict

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 2: All the paths in § have exactly i edges. Let P be one of the pathsin §.

W = 0+ wu,v) = dist(u,i — 1) + w(u, v)

\

Q =dist(u,1 — 1), "." a shorter path from s to u with at most i — 1 edges will contradict

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 2: All the paths in § have exactly i edges. Let P be one of the pathsin §.

W =0+wu,v) = disttu,i — 1) + w(u,v) = dist(v,i)

\

Q =dist(u,1 — 1), "." a shorter path from s to u with at most i — 1 edges will contradict

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 2: All the paths in § have exactly i edges. Let P be one of the pathsin §.

W = 0+wu,v) = dist(u,i — 1) + w(u,v) = dist(v, 1)

\

Q =dist(u,1 — 1), "." a shorter path from s to u with at most i — 1 edges will contradict

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Case 1: One of the paths in § has at most 1 — | edges. Then,
W = distiv,i— 1) = dist(v,1)

Case 2: All the paths in § have exactly i edges. Let P be one of the paths in §.

W = 0+wu,v) = dist(u,i — 1) + w(u,v) = dist(v,1)

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

dist(v,i) =

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

dist(v,i) =

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.
O ifi=0andv=s

dist(v,i) =

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

O ifi=0andv=s

oo, fi=0andveV-{s}
dist(v,i) =

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

O ifi=0andv=s

oo, fi=0andveV-{s}
dist(v,i) =

. otherwise

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

O ifi=0andv=s

oo, fi=0andveV-{s}
dist(v,i) =

, . otherwise
min

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

O ifi=0andv=s

oo, fi=0andveV-{s}

dist(v,i) =
ISV 1) dist(v,i — 1)

, . otherwise
min

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

O ifi=0andv=s

oo, fi=0andveV-{s}

dist(v,i) =
ISV 1) dist(v,i — 1)

| , Ootherwise
min | |
ming, yep(d(u, i — 1) + w(u, v))

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

O ifi=0andv=s

oo, fi=0andveV-{s}

dist(v,1) =
ISV 1) dist(v,i — 1)

| , Ootherwise
min | |
ming, yep(d(u, i — 1) + w(u, v))

Recurrence for SSSP

Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

O ifi=0andv=s

oo, fi=0andveV-{s}

dist(v,i) =
v:1) dist(v,i— 1) , otherwise
min
ming, yep(d(u, i — 1) + w(u, v))

\

Why this will not be less than W?

Bellman-Ford: Bottom-Up DP for SSSP

Bellman-Ford: Bottom-Up DP for SSSP

SSSP(G, s)

Bellman-Ford: Bottom-Up DP for SSSP

SSSP(G, s)
1. d[l :n], dist[]l :n][0:n—-1] ={00,00,...,00}

Bellman-Ford: Bottom-Up DP for SSSP

1. d[l :n], dist[]l :n][0:n—-1] ={00,00,...,00}

Bellman-Ford: Bottom-Up DP for SSSP

dist|v][i] stores weight of

a shortest path from s to v

using at most i edges.
1. d[l :n], dist[]l :n][0:n—-1] ={00,00,...,00}

Bellman-Ford: Bottom-Up DP for SSSP

dist|v][i] stores weight of

SSSP(G. 5) / a shc?rtest path fl.'om stov
using at most i edges.
1. d[l :n], dist[]l :n][0:n—-1] ={00,00,...,00}

2. dist|[s][0] =0

Bellman-Ford: Bottom-Up DP for SSSP

dist|v][i] stores weight of
a shortest path from s to v

using at most i edges.
dll :n], dist]l :n][0:n—-1] = {00,00,...,00}

1.
2. dist|[s][0] =0
3. fori=1ton—1

Bellman-Ford: Bottom-Up DP for SSSP

dist|v][i] stores weight of
a shortest path from s to v

} using at most i edges.

1. d[l:n], dist]l :n][0:n—1] = {00, 00,...,0
2. dist|[s][0] =0

3. fori=1ton—1

4. for v € V(G)

Bellman-Ford: Bottom-Up DP for SSSP

dist|v][i] stores weight of

SSSP(G. 5) / a shc?rtest path fl.'om stov
using at most i edges.
1. d[l :n], dist[]l :n][0:n—-1] ={00,00,...,00}

2. dist|[s][0] =0

3. fori=1ton—1

4. for v € V(G)

5 dist|v]|i] = dist|[v][i — 1]

Bellman-Ford: Bottom-Up DP for SSSP

dist|v][i] stores weight of

SSSP(G. s) / a shc?rtest path fl.'om stov
using at most i edges.
dll :n], dist]l :n][0:n—-1] = {00,00,...,00}

dist[s][0] =0
fori=1ton—1
for v € V(G)
dist|v]|i] = dist|[v][i — 1]

for each edge (u, v)

SEE - L

Bellman-Ford: Bottom-Up DP for SSSP

dist|v][i] stores weight of

SSSP(G. s) / a shc?rtest path fl.'om stov
using at most i edges.
dll :n], dist]l :n][0:n—-1] = {00,00,...,00}

dist[s][0] =0
fori=1ton—1
for v € V(G)
dist|v]|i] = dist|[v][i — 1]
for each edge (u, v)
dist|v][i] = min(dist|[v][i], dist{u]li — 1] + w(u,v))

B -

Bellman-Ford: Bottom-Up DP for SSSP

dist|v][i] stores weight of

a shortest path from s to v

using at most i edges.
. d|l :n], dist[]l :n][O:n—-1] = {0, 0,...,00}

1

2. dist|[s][0] =0

3. fori=1ton—1

4 forv € V(G)

5. dist|v]|i] = dist|[v][i — 1]

6 for each edge (u, v)

7 dist|v][i] = min(dist|[v][i], dist{u]li — 1] + w(u,v))
8. forv e V(G)

Bellman-Ford: Bottom-Up DP for SSSP

dist|v][i] stores weight of

SSSP(G. s) / a sh?rtest path f.rom stov
using at most i edges.
dll :n], dist]l :n][0:n—-1] = {00,00,...,00}

dist[s][0] =0
fori=1ton—1

for v € V(G)

dist|v]|i] = dist|[v][i — 1]
for each edge (u, v)
dist|v][i] = min(dist|[v][i], dist{u]li — 1] + w(u,v))

for v € V(G)

dlv] = dist|v][n — 1]

- -

Bellman-Ford: Bottom-Up DP for SSSP

dist|v][i] stores weight of

SSSP(G. s) / a sh?rtest path f.rom stov
using at most i edges.
dll :n], dist]l :n][0:n—-1] = {00,00,...,00}

dist[s][0] =0
fori=1ton—1

for v € V(G)

dist|v]|i] = dist|[v][i — 1]
for each edge (u, v)
dist|v][i] = min(dist|[v][i], dist{u]li — 1] + w(u,v))

for v € V(G)

dlv] = dist|v][n — 1]
10. return d

- -

Bellman-Ford: Bottom-Up DP for SSSP

SSSP(G, s)
dll :n], dist]l :n][0:n—-1] = {00,00,...,00}
dist[s][0] =0
fori=1ton—1

for v € V(G)

dist|v]|i] = dist|[v][i — 1]
for each edge (u, v)
dist|v][i] = min(dist|[v][i], dist{u]li — 1] + w(u,v))

for v € V(G)

dlv] = dist|v][n — 1]
10. return d

- -

Bellman-Ford: Bottom-Up DP for SSSP

SSSP(G, s)
dll :n], dist]l :n][0:n—-1] = {00,00,...,00}
dist[s][0] = 0 O V])
fori=1ton—1 /

for v € V(G)

dist[v][i] = dist|[v][i — 1]
for each edge (u, v)
dist|v][i] = min(dist|[v][i], dist{u]li — 1] + w(u,v))

for v € V(G)

dlv] = dist|v][n — 1]
10. return d

- -

Bellman-Ford: Bottom-Up DP for SSSP

SSSP(G, s)
dll :n], dist]l :n][0:n—-1] = {00,00,...,00}
dist[s][0] =0

fori=1ton—1

1

2.

3.

4. forv e V(G) «<— ——O(|V|+|E])

5. dist[v][i] = dist|[v][i —‘1]/

6. for each edge (u, v)

7. dist|v][i] = min(dist|[v][i], dist{u]li — 1] + w(u,v))
8. forv e V(G)

9

dlv] = dist[v][n — 1]
10. return d

Bellman-Ford: Bottom-Up DP for SSSP

SSSP(G, s)
dll :n], dist]l :n][0:n—-1] = {00,00,...,00}
dist[s][0] =0

fori=1ton—1

1

2.

3.

4. forv e V(G) «<— ——O(|V|+|E])

5. dist|v]|i] = dist|[v][i —41]/

6. for each edge (u, v)

7. dist|v][i] = min(dist|[v][i], dist{u]li — 1] + w(u,v))
3.

9

forve V(G) «— o V])
dlv] = dist|v][n — 1]

10. return d

Bellman-Ford: Bottom-Up DP for SSSP

SSSP(G, s)
dll :n], dist]l :n][0:n—-1] = {00,00,...,00}
dist[s][0] =0

fori=1ton—1

1

2.

3.

4. forv e V(G) «<— ——O(|V|+|E])

5. dist|v]|i] = dist|[v][i —41]/

6. for each edge (u, v)

7. dist|v][i] = min(dist|[v][i], dist{u]li — 1] + w(u,v))
3.

9

for v € V(G) — (| V|) Time Complexity:

d[v] = dist|v][n — 1] OC(VI].(|VI+|E]|))
10. return d

Bellman-Ford: Bottom-Up DP for SSSP

SSSP(G, s)
dll :n], dist]l :n][0:n—-1] = {00,00,...,00}
dist[s][0] =0
fori=1ton—1
for v € V(G)
dist|v]|i] = dist|[v][i — 1]
for each edge (u, v)
dist|v][i] = min(dist|[v][i], dist{u]li — 1] + w(u,v))

for v € V(G) Time Complexity:
d[v] = dist|v][n — 1] OC(VI].(|VI+|E]|))
10. return d

- -

Bellman-Ford: Bottom-Up DP for SSSP

SSSP(G, s)
dll :n], dist]l :n][0:n—-1] = {00,00,...,00}
dist[s][0] =0
fori=1ton—1
forve V(G)«— —— Modify line 4 to 7 so thatfthis cost becomes only O(|E|).

1

2.

3.

4.

5. dist|v]|i] = dist|[v][i —V
6. for each edge (u, v)

7. dist|v][i] = min(dist|[v][i], dist{u]li — 1] + w(u,v))
3.

9

for v € V(G) Time Complexity:
d[v] = dist|v][n — 1] OC(VI].(|VI+|E]|))
10. return d

Activity-Selection

Activity-Selection

Act-Sel:

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities S = {a,a,,...,a,}

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities S = {a,,a,, ..., a,}, where each activity a; has

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities S = {a,,a,, ..., a,}, where each activity a; has

start time s; and finish time f..

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities S = {a,,a,, ..., a,}, where each activity a; has

start time s; and finish time f.. If selected, activity a; takes place during [s;, /).

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities S = {a,,a,, ..., a,}, where each activity a; has

start time s; and finish time f.. If selected, activity a; takes place during [s;, /).

Output:

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities S = {a,,a,, ..., a,}, where each activity a; has

start time s; and finish time f.. If selected, activity a; takes place during [s;, /).

Output: Find a largest-size subset of mutually compatible activities.

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities S = {a,,a,, ..., a,}, where each activity a; has

start time s; and finish time f.. If selected, activity a; takes place during [s;, /).

Output: Find a largest-size subset of mutually compatible activities.

f

Two activities ¢; and ¢; are mutually compatible it either s, > f, or 5, > f..

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities S = {a,,a,, ..., a,}, where each activity a; has

start time s; and finish time f.. If selected, activity a; takes place during [s;, /).

Output: Find a largest-size subset of mutually compatible activities.

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities S = {a,,a,, ..., a,}, where each activity a; has

start time s; and finish time f.. If selected, activity a; takes place during [s;, /).

Output: Find a largest-size subset of mutually compatible activities.

Assumption: Given activities are sorted in monotonically increasing order of finish time.

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities S = {a,,a,, ..., a,}, where each activity a; has

start time s; and finish time f.. If selected, activity a; takes place during [s;, /).

Output: Find a largest-size subset of mutually compatible activities.

Assumption: Given activities are sorted in monotonically increasing order of finish time.

Example:

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities S = {a,,a,, ..., a,}, where each activity a; has

start time s; and finish time f.. If selected, activity a; takes place during [s;, /).

Output: Find a largest-size subset of mutually compatible activities.

Assumption: Given activities are sorted in monotonically increasing order of finish time.

Example:
l 1 2 3 4 S 6 7 3 9 10 11

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities S = {a,,a,, ..., a,}, where each activity a; has

start time s; and finish time f.. If selected, activity a; takes place during [s;, /).

Output: Find a largest-size subset of mutually compatible activities.

Assumption: Given activities are sorted in monotonically increasing order of finish time.

Example:
l 1 2 3 4 S 6 7 3 9 10 11

s |1 |13]o|s |3 56|78]| 2|12
fFlals|le|l79]910]11] 12] 14]T16

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities S = {a,,a,, ..., a,}, where each activity a; has

start time s; and finish time f.. If selected, activity a; takes place during [s;, /).

Output: Find a largest-size subset of mutually compatible activities.

Assumption: Given activities are sorted in monotonically increasing order of finish time.

Example:
l 1 2 3 4 S 6 7 3 9 10 11

ss |1 |3]lo|5|3|56 |7]| 8| 2|12
flals|lel 7991011]| 12]14]T16

\a,,ay,agq,aq | is a largest-size subset ot mutually compatible activities.

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities S = {a,,a,, ..., a,}, where each activity a; has

start time s; and finish time f.. If selected, activity a; takes place during [s;, /).

Output: Find a largest-size subset of mutually compatible activities.

Assumption: Given activities are sorted in monotonically increasing order of finish time.

Example:
l 1 2 3 4 S 6 7 3 9 10 11

s (1|3 (o|5|3 5|6 7|8 |2 |12
4|56 |79]9 |10]1L]| 12| 14]16

\a,,ay,agq,aq | is a largest-size subset ot mutually compatible activities.

