Lecture 27

Dynamic Programming: Bellman-Ford (contd.), Activity-Selection Problem
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If there is no path from s to v with at most i edges, then dist(v,i) = oo
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We would like to develop a recurrence so that dist(v,i) = W.
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Clearly, dist(v,i — 1) > W is not possible.
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Let dist(v, 1) = weight of a shortest path among all the paths from s to v with at most i edges.

Let § be the set of all the shortest paths, each of weight W, from s to v with at most / edges.

O ifi=0andv=s

oo, fi=0andveV-{s}

dist(v,i) =
v:1) dist(v,i— 1) , otherwise
min
ming, yep(d(u, i — 1) + w(u, v))

\

Why this will not be less than W?
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Two activities ¢; and ¢; are mutually compatible it either s, > f, or 5, > f..
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