

Lecture 27

Dynamic Programming: Bellman-Ford (contd.), Activity-Selection Problem

Recurrence for SSSP

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

We are interested in $dist(v, n - 1)$ for $v \in V(G)$

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

If there is no path from s to v with at most i edges, then $dist(v, i) = \infty$

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

We would like to develop a recurrence so that $dist(v, i) = W$.

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Case 1: One of the paths in S has **at most $i - 1$ edges**.

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Case 1: One of the paths in S has **at most $i - 1$ edges**.

Case 2: All the paths in S have **exactly i edges**.

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Case 1: One of the paths in S has **at most $i - 1$ edges**.

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Case 1: One of the paths in S has **at most $i - 1$ edges**. Then,

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Case 1: One of the paths in S has **at most $i - 1$ edges**. Then,

$$W = dist(v, i - 1)$$

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Case 1: One of the paths in S has **at most $i - 1$ edges**. Then,

$$W = dist(v, i - 1)$$

Clearly, $dist(v, i - 1) > W$ is not possible.

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Case 1: One of the paths in S has **at most $i - 1$ edges**. Then,

$$W = dist(v, i - 1)$$

$dist(v, i - 1) < W$ is also not possible.

Recurrence for SSSP

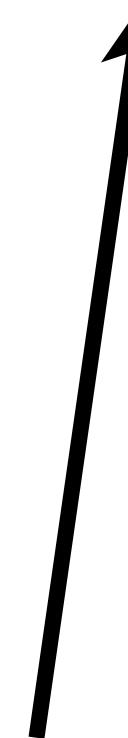
Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Case 1: One of the paths in S has **at most $i - 1$ edges**. Then,

$$W = dist(v, i - 1)$$

$dist(v, i - 1) < W$ is also not possible. Otherwise, it will contradict.



Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Case 1: One of the paths in S has **at most $i - 1$ edges**. Then,

$$W = dist(v, i - 1) = dist(v, i)$$

$dist(v, i - 1) < W$ is also not possible. Otherwise, it will contradict.

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Case 1: One of the paths in S has **at most $i - 1$ edges**. Then,

$$W = dist(v, i - 1) = dist(v, i)$$

$dist(v, i - 1) < W$ is also not possible. Otherwise, it will contradict.

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Case 2: All the paths in S have **exactly i edges**.

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

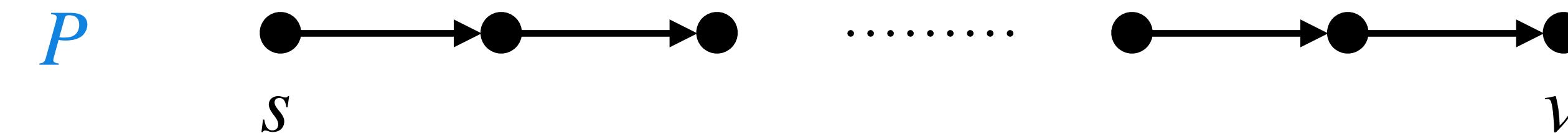
Case 2: All the paths in S have **exactly i edges**. Let P be one of the paths in S .

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Case 2: All the paths in S have **exactly i edges**. Let P be one of the paths in S .

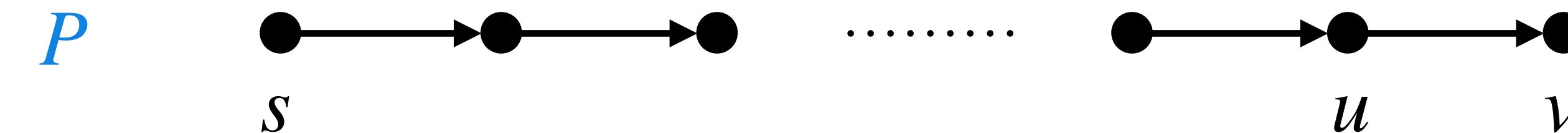


Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Case 2: All the paths in S have **exactly i edges**. Let P be one of the paths in S .



Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

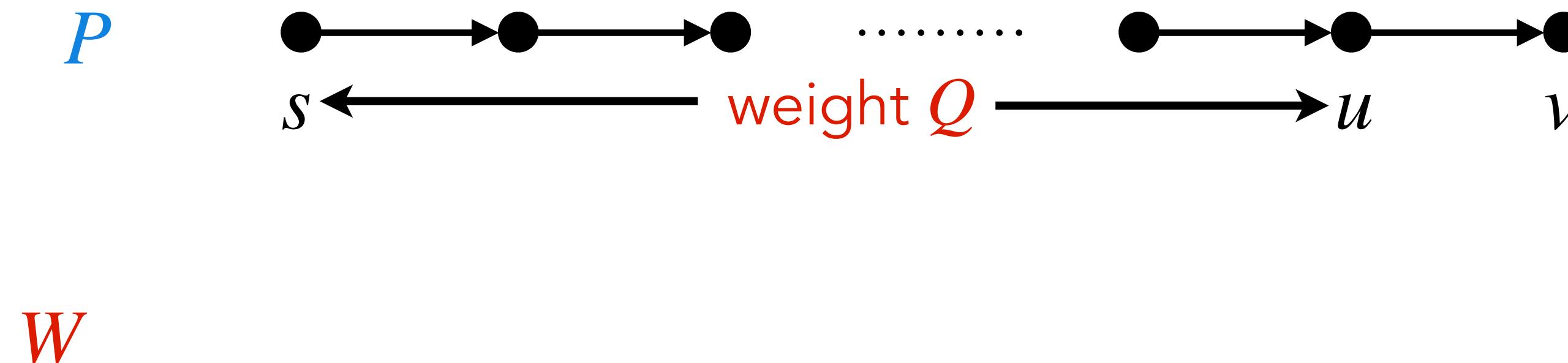
Case 2: All the paths in S have **exactly i edges**. Let P be one of the paths in S .

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Case 2: All the paths in S have **exactly i edges**. Let P be one of the paths in S .



Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Case 2: All the paths in S have **exactly i edges**. Let P be one of the paths in S .

$$W = Q + w(u, v)$$

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Case 2: All the paths in S have **exactly i edges**. Let P be one of the paths in S .

$$W = Q + w(u, v)$$

$$Q = dist(u, i - 1)$$

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Case 2: All the paths in S have **exactly i edges**. Let P be one of the paths in S .

$$W = Q + w(u, v)$$

$Q = dist(u, i - 1)$, \therefore a shorter path from s to u with at most $i - 1$ edges will contradict

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Case 2: All the paths in S have **exactly i edges**. Let P be one of the paths in S .

$$W = Q + w(u, v)$$

$Q = dist(u, i - 1)$, \therefore a shorter path from s to u with at most $i - 1$ edges will contradict

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Case 2: All the paths in S have **exactly i edges**. Let P be one of the paths in S .

$$W = Q + w(u, v) = dist(u, i - 1) + w(u, v)$$

$Q = dist(u, i - 1)$, \therefore a shorter path from s to u with at most $i - 1$ edges will contradict

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Case 2: All the paths in S have **exactly i edges**. Let P be one of the paths in S .

$$W = Q + w(u, v) = dist(u, i - 1) + w(u, v) = dist(v, i)$$

$Q = dist(u, i - 1)$, \therefore a shorter path from s to u with at most $i - 1$ edges will contradict

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Case 2: All the paths in S have **exactly i edges**. Let P be one of the paths in S .

$$W = Q + w(u, v) = dist(u, i - 1) + w(u, v) = dist(v, i)$$

$Q = dist(u, i - 1)$, \therefore a shorter path from s to u with at most $i - 1$ edges will contradict

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Case 1: One of the paths in S has **at most $i - 1$ edges**. Then,

$$W = dist(v, i - 1) = dist(v, i)$$

Case 2: All the paths in S have **exactly i edges**. Let P be one of the paths in S .

$$W = Q + w(u, v) = dist(u, i - 1) + w(u, v) = dist(v, i)$$

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

$$dist(v, i) =$$

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

$$dist(v, i) = \left\{ \begin{array}{l} \text{paths from } s \text{ to } v \text{ with } \leq i \text{ edges} \end{array} \right.$$

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

$$dist(v, i) = \begin{cases} 0, & \text{if } i = 0 \text{ and } v = s \\ \infty, & \text{otherwise} \end{cases}$$

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

$$dist(v, i) = \begin{cases} 0, & \text{if } i = 0 \text{ and } v = s \\ \infty, & \text{if } i = 0 \text{ and } v \in V - \{s\} \end{cases}$$

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

$$dist(v, i) = \begin{cases} 0, & \text{if } i = 0 \text{ and } v = s \\ \infty, & \text{if } i = 0 \text{ and } v \in V - \{s\} \\ , & \text{otherwise} \end{cases}$$

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

$$dist(v, i) = \begin{cases} 0, & \text{if } i = 0 \text{ and } v = s \\ \infty, & \text{if } i = 0 \text{ and } v \in V - \{s\} \\ \min \left\{ \begin{array}{l} \dots \\ \dots \end{array} \right. & , \text{ otherwise} \end{cases}$$

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

$$dist(v, i) = \begin{cases} 0, & \text{if } i = 0 \text{ and } v = s \\ \infty, & \text{if } i = 0 \text{ and } v \in V - \{s\} \\ \min \left\{ \begin{array}{l} dist(v, i - 1) \\ \quad \quad \quad , \quad \text{otherwise} \end{array} \right. \end{cases}$$

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

$$dist(v, i) = \begin{cases} 0, & \text{if } i = 0 \text{ and } v = s \\ \infty, & \text{if } i = 0 \text{ and } v \in V - \{s\} \\ \min \left\{ \begin{array}{l} dist(v, i - 1) \\ \min_{(u,v) \in E} (d(u, i - 1) + w(u, v)) \end{array} \right\}, & \text{otherwise} \end{cases}$$

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

$$dist(v, i) = \begin{cases} 0, & \text{if } i = 0 \text{ and } v = s \\ \infty, & \text{if } i = 0 \text{ and } v \in V - \{s\} \\ \min \left\{ \begin{array}{l} dist(v, i - 1) \\ \min_{(u,v) \in E} (d(u, i - 1) + w(u, v)) \end{array} \right\}, & \text{otherwise} \end{cases}$$

Recurrence for SSSP

Let $dist(v, i)$ = weight of a shortest path among all the paths from s to v with **at most i edges**.

Let S be the set of all the shortest paths, each of weight W , from s to v with **at most i edges**.

$$dist(v, i) = \begin{cases} 0, & \text{if } i = 0 \text{ and } v = s \\ \infty, & \text{if } i = 0 \text{ and } v \in V - \{s\} \\ \min \left\{ \begin{array}{l} dist(v, i - 1) \\ \min_{(u,v) \in E} (d(u, i - 1) + w(u, v)) \end{array} \right\}, & \text{otherwise} \end{cases}$$

Why this will not be less than W ?

Bellman-Ford: Bottom-Up DP for SSSP

Bellman-Ford: Bottom-Up DP for SSSP

$\text{SSSP}(G, s)$

Bellman-Ford: Bottom-Up DP for SSSP

$\text{SSSP}(G, s)$

1. $d[1 : n], dist[1 : n][0 : n - 1] = \{\infty, \infty, \dots, \infty\}$

Bellman-Ford: Bottom-Up DP for SSSP

$$n = |V(G)|$$

$SSSP(G, s)$

1. $d[1 : n], dist[1 : n][0 : n - 1] = \{\infty, \infty, \dots, \infty\}$

Bellman-Ford: Bottom-Up DP for SSSP

$SSSP(G, s)$

1. $d[1 : n], dist[1 : n][0 : n - 1] = \{\infty, \infty, \dots, \infty\}$

$dist[v][i]$ stores weight of
a shortest path from s to v
using at most i edges.

Bellman-Ford: Bottom-Up DP for SSSP

$SSSP(G, s)$

1. $d[1 : n], dist[1 : n][0 : n - 1] = \{\infty, \infty, \dots, \infty\}$
2. $dist[s][0] = 0$

$dist[v][i]$ stores weight of a shortest path from s to v using at most i edges.

Bellman-Ford: Bottom-Up DP for SSSP

$\text{SSSP}(G, s)$

1. $d[1 : n], \text{dist}[1 : n][0 : n - 1] = \{\infty, \infty, \dots, \infty\}$
2. $\text{dist}[s][0] = 0$
3. **for** $i = 1$ **to** $n - 1$

$\text{dist}[v][i]$ stores weight of a shortest path from s to v using at most i edges.

Bellman-Ford: Bottom-Up DP for SSSP

$\text{SSSP}(G, s)$

1. $d[1 : n], \text{dist}[1 : n][0 : n - 1] = \{\infty, \infty, \dots, \infty\}$
2. $\text{dist}[s][0] = 0$
3. **for** $i = 1$ **to** $n - 1$
4. **for** $v \in V(G)$

$\text{dist}[v][i]$ stores weight of a shortest path from s to v using at most i edges.

Bellman-Ford: Bottom-Up DP for SSSP

$\text{SSSP}(G, s)$

1. $d[1 : n], \text{dist}[1 : n][0 : n - 1] = \{\infty, \infty, \dots, \infty\}$
2. $\text{dist}[s][0] = 0$
3. **for** $i = 1$ **to** $n - 1$
4. **for** $v \in V(G)$
5. $\text{dist}[v][i] = \text{dist}[v][i - 1]$

$\text{dist}[v][i]$ stores weight of a shortest path from s to v using at most i edges.

Bellman-Ford: Bottom-Up DP for SSSP

$\text{SSSP}(G, s)$

1. $d[1 : n], \text{dist}[1 : n][0 : n - 1] = \{\infty, \infty, \dots, \infty\}$
2. $\text{dist}[s][0] = 0$
3. **for** $i = 1$ **to** $n - 1$
4. **for** $v \in V(G)$
5. $\text{dist}[v][i] = \text{dist}[v][i - 1]$
6. **for** each edge (u, v)

$\text{dist}[v][i]$ stores weight of a shortest path from s to v using at most i edges.

Bellman-Ford: Bottom-Up DP for SSSP

$\text{SSSP}(G, s)$

1. $d[1 : n], \ dist[1 : n][0 : n - 1] = \{\infty, \infty, \dots, \infty\}$
2. $dist[s][0] = 0$
3. **for** $i = 1$ **to** $n - 1$
4. **for** $v \in V(G)$
5. $dist[v][i] = dist[v][i - 1]$
6. **for** each edge (u, v)
7. $dist[v][i] = \min(dist[v][i], dist[u][i - 1] + w(u, v))$

$dist[v][i]$ stores weight of a shortest path from s to v using at most i edges.

Bellman-Ford: Bottom-Up DP for SSSP

$\text{SSSP}(G, s)$

1. $d[1 : n], \text{dist}[1 : n][0 : n - 1] = \{\infty, \infty, \dots, \infty\}$
2. $\text{dist}[s][0] = 0$
3. **for** $i = 1$ **to** $n - 1$
4. **for** $v \in V(G)$
5. $\text{dist}[v][i] = \text{dist}[v][i - 1]$
6. **for** each edge (u, v)
7. $\text{dist}[v][i] = \min(\text{dist}[v][i], \text{dist}[u][i - 1] + w(u, v))$
8. **for** $v \in V(G)$

$\text{dist}[v][i]$ stores weight of a shortest path from s to v using at most i edges.

Bellman-Ford: Bottom-Up DP for SSSP

$\text{SSSP}(G, s)$

1. $d[1 : n], \text{dist}[1 : n][0 : n - 1] = \{\infty, \infty, \dots, \infty\}$
2. $\text{dist}[s][0] = 0$
3. **for** $i = 1$ **to** $n - 1$
4. **for** $v \in V(G)$
5. $\text{dist}[v][i] = \text{dist}[v][i - 1]$
6. **for** each edge (u, v)
7. $\text{dist}[v][i] = \min(\text{dist}[v][i], \text{dist}[u][i - 1] + w(u, v))$
8. **for** $v \in V(G)$
9. $d[v] = \text{dist}[v][n - 1]$

$\text{dist}[v][i]$ stores weight of a shortest path from s to v using at most i edges.

Bellman-Ford: Bottom-Up DP for SSSP

$\text{SSSP}(G, s)$

1. $d[1 : n], \text{dist}[1 : n][0 : n - 1] = \{\infty, \infty, \dots, \infty\}$
2. $\text{dist}[s][0] = 0$
3. **for** $i = 1$ **to** $n - 1$
4. **for** $v \in V(G)$
5. $\text{dist}[v][i] = \text{dist}[v][i - 1]$
6. **for** each edge (u, v)
7. $\text{dist}[v][i] = \min(\text{dist}[v][i], \text{dist}[u][i - 1] + w(u, v))$
8. **for** $v \in V(G)$
9. $d[v] = \text{dist}[v][n - 1]$
10. **return** d

$\text{dist}[v][i]$ stores weight of a shortest path from s to v using at most i edges.

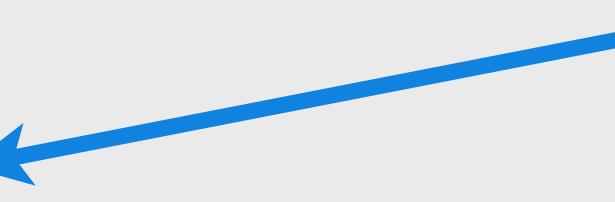
Bellman-Ford: Bottom-Up DP for SSSP

$\text{SSSP}(G, s)$

1. $d[1 : n], dist[1 : n][0 : n - 1] = \{\infty, \infty, \dots, \infty\}$
2. $dist[s][0] = 0$
3. **for** $i = 1$ **to** $n - 1$
4. **for** $v \in V(G)$
5. $dist[v][i] = dist[v][i - 1]$
6. **for** each edge (u, v)
7. $dist[v][i] = \min(dist[v][i], dist[u][i - 1] + w(u, v))$
8. **for** $v \in V(G)$
9. $d[v] = dist[v][n - 1]$
10. **return** d

Bellman-Ford: Bottom-Up DP for SSSP

$\text{SSSP}(G, s)$

1. $d[1 : n], dist[1 : n][0 : n - 1] = \{\infty, \infty, \dots, \infty\}$
2. $dist[s][0] = 0$
3. **for** $i = 1$ **to** $n - 1$ 
4. **for** $v \in V(G)$
5. $dist[v][i] = dist[v][i - 1]$
6. **for** each edge (u, v)
7. $dist[v][i] = \min(dist[v][i], dist[u][i - 1] + w(u, v))$
8. **for** $v \in V(G)$
9. $d[v] = dist[v][n - 1]$
10. **return** d

Bellman-Ford: Bottom-Up DP for SSSP

$\text{SSSP}(G, s)$

1. $d[1 : n], dist[1 : n][0 : n - 1] = \{\infty, \infty, \dots, \infty\}$
2. $dist[s][0] = 0$
3. **for** $i = 1$ **to** $n - 1$ ← $\Theta(|V|)$
4. **for** $v \in V(G)$ ← $\Theta(|V| + |E|)$
5. $dist[v][i] = dist[v][i - 1]$
6. **for** each edge (u, v) ←
7. $dist[v][i] = \min(dist[v][i], dist[u][i - 1] + w(u, v))$
8. **for** $v \in V(G)$
9. $d[v] = dist[v][n - 1]$
10. **return** d

Bellman-Ford: Bottom-Up DP for SSSP

$\text{SSSP}(G, s)$

1. $d[1 : n], dist[1 : n][0 : n - 1] = \{\infty, \infty, \dots, \infty\}$
2. $dist[s][0] = 0$
3. **for** $i = 1$ **to** $n - 1$ ← $\Theta(|V|)$
4. **for** $v \in V(G)$ ← $\Theta(|V| + |E|)$
5. $dist[v][i] = dist[v][i - 1]$
6. **for** each edge (u, v) ←
7. $dist[v][i] = \min(dist[v][i], dist[u][i - 1] + w(u, v))$
8. **for** $v \in V(G)$ ← $\Theta(|V|)$
9. $d[v] = dist[v][n - 1]$
10. **return** d

Bellman-Ford: Bottom-Up DP for SSSP

$\text{SSSP}(G, s)$

1. $d[1 : n], dist[1 : n][0 : n - 1] = \{\infty, \infty, \dots, \infty\}$
2. $dist[s][0] = 0$
3. **for** $i = 1$ **to** $n - 1$ ← $\Theta(|V|)$
4. **for** $v \in V(G)$ ← $\Theta(|V| + |E|)$
5. $dist[v][i] = dist[v][i - 1]$
6. **for** each edge (u, v) ← $\Theta(|V|)$
7. $dist[v][i] = \min(dist[v][i], dist[u][i - 1] + w(u, v))$
8. **for** $v \in V(G)$ ← $\Theta(|V|)$
9. $d[v] = dist[v][n - 1]$
10. **return** d

Time Complexity:

$$\Theta(|V| \cdot (|V| + |E|))$$

Bellman-Ford: Bottom-Up DP for SSSP

$\text{SSSP}(G, s)$

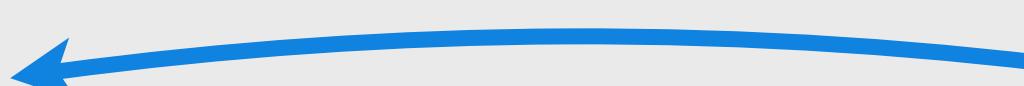
1. $d[1 : n], dist[1 : n][0 : n - 1] = \{\infty, \infty, \dots, \infty\}$
2. $dist[s][0] = 0$
3. **for** $i = 1$ **to** $n - 1$
4. **for** $v \in V(G)$
5. $dist[v][i] = dist[v][i - 1]$
6. **for** each edge (u, v)
7. $dist[v][i] = \min(dist[v][i], dist[u][i - 1] + w(u, v))$
8. **for** $v \in V(G)$
9. $d[v] = dist[v][n - 1]$
10. **return** d

Time Complexity:

$\Theta(|V| \cdot (|V| + |E|))$

Bellman-Ford: Bottom-Up DP for SSSP

$\text{SSSP}(G, s)$

1. $d[1 : n], dist[1 : n][0 : n - 1] = \{\infty, \infty, \dots, \infty\}$
2. $dist[s][0] = 0$
3. **for** $i = 1$ **to** $n - 1$
4. **for** $v \in V(G)$  **Modify line 4 to 7 so that this cost becomes only $\Theta(|E|)$.**
5. $dist[v][i] = dist[v][i - 1]$
6. **for each edge** (u, v)
7. $dist[v][i] = \min(dist[v][i], dist[u][i - 1] + w(u, v))$
8. **for** $v \in V(G)$
9. $d[v] = dist[v][n - 1]$
10. **return** d

Time Complexity:

$\Theta(|V| \cdot (|V| + |E|))$

Activity-Selection

Activity-Selection

Act-Sel:

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities $S = \{a_1, a_2, \dots, a_n\}$

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities $S = \{a_1, a_2, \dots, a_n\}$, where each activity a_i has

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities $S = \{a_1, a_2, \dots, a_n\}$, where each activity a_i has **start time** s_i and **finish time** f_i .

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities $S = \{a_1, a_2, \dots, a_n\}$, where each activity a_i has **start time** s_i and **finish time** f_i . If selected, activity a_i takes place during $[s_i, f_i)$.

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities $S = \{a_1, a_2, \dots, a_n\}$, where each activity a_i has **start time** s_i and **finish time** f_i . If selected, activity a_i takes place during $[s_i, f_i)$.

Output:

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities $S = \{a_1, a_2, \dots, a_n\}$, where each activity a_i has **start time** s_i and **finish time** f_i . If selected, activity a_i takes place during $[s_i, f_i)$.

Output: Find a **largest-size** subset of **mutually compatible** activities.

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities $S = \{a_1, a_2, \dots, a_n\}$, where each activity a_i has **start time** s_i and **finish time** f_i . If selected, activity a_i takes place during $[s_i, f_i)$.

Output: Find a **largest-size** subset of **mutually compatible** activities.

Two activities a_i and a_j are mutually compatible if either $s_i \geq f_j$ or $s_j \geq f_i$.

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities $S = \{a_1, a_2, \dots, a_n\}$, where each activity a_i has **start time** s_i and **finish time** f_i . If selected, activity a_i takes place during $[s_i, f_i)$.

Output: Find a **largest-size** subset of **mutually compatible** activities.

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities $S = \{a_1, a_2, \dots, a_n\}$, where each activity a_i has **start time** s_i and **finish time** f_i . If selected, activity a_i takes place during $[s_i, f_i)$.

Output: Find a **largest-size** subset of **mutually compatible** activities.

Assumption: Given activities are **sorted** in monotonically increasing order of finish time.

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities $S = \{a_1, a_2, \dots, a_n\}$, where each activity a_i has **start time** s_i and **finish time** f_i . If selected, activity a_i takes place during $[s_i, f_i)$.

Output: Find a **largest-size** subset of **mutually compatible** activities.

Assumption: Given activities are **sorted** in monotonically increasing order of finish time.

Example:

Activity-Selection

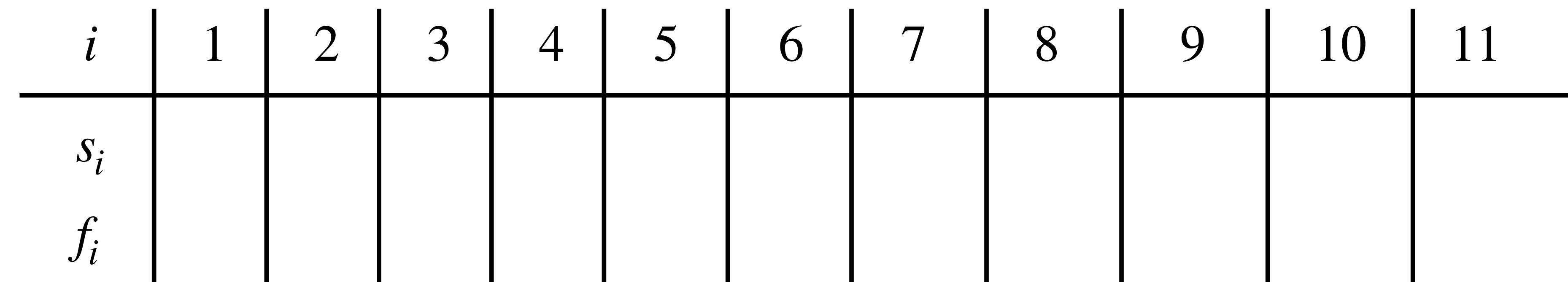
Act-Sel:

Input: Given a set of n proposed activities $S = \{a_1, a_2, \dots, a_n\}$, where each activity a_i has **start time** s_i and **finish time** f_i . If selected, activity a_i takes place during $[s_i, f_i)$.

Output: Find a **largest-size** subset of **mutually compatible** activities.

Assumption: Given activities are **sorted** in monotonically increasing order of finish time.

Example:



Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities $S = \{a_1, a_2, \dots, a_n\}$, where each activity a_i has **start time** s_i and **finish time** f_i . If selected, activity a_i takes place during $[s_i, f_i)$.

Output: Find a **largest-size** subset of **mutually compatible** activities.

Assumption: Given activities are **sorted** in monotonically increasing order of finish time.

Example:

i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	7	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities $S = \{a_1, a_2, \dots, a_n\}$, where each activity a_i has **start time** s_i and **finish time** f_i . If selected, activity a_i takes place during $[s_i, f_i)$.

Output: Find a **largest-size** subset of **mutually compatible** activities.

Assumption: Given activities are **sorted** in monotonically increasing order of finish time.

Example:

i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	7	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

$\{a_1, a_4, a_8, a_{11}\}$ is a largest-size subset of mutually compatible activities.

Activity-Selection

Act-Sel:

Input: Given a set of n proposed activities $S = \{a_1, a_2, \dots, a_n\}$, where each activity a_i has **start time** s_i and **finish time** f_i . If selected, activity a_i takes place during $[s_i, f_i)$.

Output: Find a **largest-size** subset of **mutually compatible** activities.

Assumption: Given activities are **sorted** in monotonically increasing order of finish time.

Example:

i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	7	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

$\{a_1, a_4, a_8, a_{11}\}$ is a largest-size subset of mutually compatible activities.