
Lecture 27

Dynamic Programming: Bellman-Ford (contd.), Activity-Selection Problem

Recurrence for SSSP

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

We are interested in for dist(v, n − 1) v ∈ V(G)

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

If there is no path from to with at most edges, then s v i dist(v, i) = ∞

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

We would like to develop a recurrence so that .dist(v, i) = W

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : One of the paths in has at most edges.1 S i − 1

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : One of the paths in has at most edges.1 S i − 1

Case : All the paths in have exactly edges.2 S i

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : One of the paths in has at most edges.1 S i − 1

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : One of the paths in has at most edges.1 S i − 1

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

Then,

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : One of the paths in has at most edges.1 S i − 1

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

 W = dist(v, i − 1)

Then,

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : One of the paths in has at most edges.1 S i − 1

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

 W = dist(v, i − 1)

Then,

Clearly, is not possible.dist(v, i − 1) > W

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : One of the paths in has at most edges.1 S i − 1

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

 W = dist(v, i − 1)

Then,

 is also not possible.dist(v, i − 1) < W

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : One of the paths in has at most edges.1 S i − 1

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

 W = dist(v, i − 1)

Then,

 is also not possible.dist(v, i − 1) < W Otherwise, it will contradict.

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : One of the paths in has at most edges.1 S i − 1

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

 W = dist(v, i − 1) = dist(v, i)

Then,

 is also not possible.dist(v, i − 1) < W Otherwise, it will contradict.

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : One of the paths in has at most edges.1 S i − 1

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

 W = dist(v, i − 1) = dist(v, i)

Then,

 is also not possible.dist(v, i − 1) < W Otherwise, it will contradict.

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : All the paths in have exactly edges.2 S i

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : All the paths in have exactly edges.2 S i

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

Let be one of the paths in .P S

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : All the paths in have exactly edges.2 S i

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

s v

Let be one of the paths in .P S

P

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : All the paths in have exactly edges.2 S i

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

s u v

Let be one of the paths in .P S

P

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : All the paths in have exactly edges.2 S i

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

s u v

Let be one of the paths in .P S

P
weight Q

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : All the paths in have exactly edges.2 S i

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

s u v

Let be one of the paths in .P S

P

 W

weight Q

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : All the paths in have exactly edges.2 S i

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

s u v

Let be one of the paths in .P S

P

 W = Q + w(u, v)

weight Q

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : All the paths in have exactly edges.2 S i

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

s u v

Let be one of the paths in .P S

P

 W = Q + w(u, v)

weight Q

 Q = dist(u, i − 1)

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : All the paths in have exactly edges.2 S i

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

s u v

Let be one of the paths in .P S

P

 W = Q + w(u, v)

weight Q

 Q = dist(u, i − 1), a shorter path from to with at most edges will contradict∵ s u i − 1

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : All the paths in have exactly edges.2 S i

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

s u v

Let be one of the paths in .P S

P

 W = Q + w(u, v)

weight Q

 Q = dist(u, i − 1), a shorter path from to with at most edges will contradict∵ s u i − 1

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : All the paths in have exactly edges.2 S i

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

s u v

Let be one of the paths in .P S

P

 W = Q + w(u, v) = dist(u, i − 1) + w(u, v)

weight Q

 Q = dist(u, i − 1), a shorter path from to with at most edges will contradict∵ s u i − 1

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : All the paths in have exactly edges.2 S i

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

s u v

Let be one of the paths in .P S

P

 W = Q + w(u, v) = dist(u, i − 1) + w(u, v) = dist(v, i)

weight Q

 Q = dist(u, i − 1), a shorter path from to with at most edges will contradict∵ s u i − 1

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : All the paths in have exactly edges.2 S i

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

s u v

Let be one of the paths in .P S

P

 W = Q + w(u, v) = dist(u, i − 1) + w(u, v) = dist(v, i)

weight Q

 Q = dist(u, i − 1), a shorter path from to with at most edges will contradict∵ s u i − 1

Recurrence for SSSP
Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Case : All the paths in have exactly edges.2 S i

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

s u v

Let be one of the paths in .P S

P

 W = Q + w(u, v) = dist(u, i − 1) + w(u, v) = dist(v, i)

weight Q

Case : One of the paths in has at most edges.1 S i − 1

 W = dist(v, i − 1) = dist(v, i)

Then,

Recurrence for SSSP

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Recurrence for SSSP

 dist(v, i) =

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Recurrence for SSSP

 dist(v, i) =

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Recurrence for SSSP

 dist(v, i)

, if and 0 i = 0 v = s

=

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Recurrence for SSSP

 dist(v, i)

, if and 0 i = 0 v = s

=
, if and ∞ i = 0 v ∈ V − {s}

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Recurrence for SSSP

 dist(v, i)

, if and 0 i = 0 v = s

=
, if and ∞ i = 0 v ∈ V − {s}

, otherwise

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Recurrence for SSSP

 dist(v, i)

, if and 0 i = 0 v = s

=
, if and ∞ i = 0 v ∈ V − {s}

min
, otherwise

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Recurrence for SSSP

 dist(v, i)

, if and 0 i = 0 v = s

=
, if and ∞ i = 0 v ∈ V − {s}

 dist(v, i − 1)
min

, otherwise

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Recurrence for SSSP

 dist(v, i)

, if and 0 i = 0 v = s

min(u,v)∈E(d(u, i − 1) + w(u, v))

=
, if and ∞ i = 0 v ∈ V − {s}

 dist(v, i − 1)
min

, otherwise

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Recurrence for SSSP

 dist(v, i)

, if and 0 i = 0 v = s

min(u,v)∈E(d(u, i − 1) + w(u, v))

=
, if and ∞ i = 0 v ∈ V − {s}

 dist(v, i − 1)
min

, otherwise

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Recurrence for SSSP

 dist(v, i)

, if and 0 i = 0 v = s

min(u,v)∈E(d(u, i − 1) + w(u, v))

=
, if and ∞ i = 0 v ∈ V − {s}

 dist(v, i − 1)
min

, otherwise

Let be the set of all the shortest paths, each of weight , from to with at most edges.S W s v i

Let weight of a shortest path among all the paths from to with at most edges.dist(v, i) = s v i

Why this will not be less than ?W

Bellman-Ford: Bottom-Up DP for SSSP

Bellman-Ford: Bottom-Up DP for SSSP

 SSSP(G, s)

Bellman-Ford: Bottom-Up DP for SSSP

 SSSP(G, s)
 1. , d[1 : n] dist[1 : n][0 : n − 1] = {∞, ∞, …, ∞}

Bellman-Ford: Bottom-Up DP for SSSP

 SSSP(G, s)
 1. , d[1 : n] dist[1 : n][0 : n − 1] = {∞, ∞, …, ∞}

n = |V(G) |

Bellman-Ford: Bottom-Up DP for SSSP

 SSSP(G, s)
 1. , d[1 : n] dist[1 : n][0 : n − 1] = {∞, ∞, …, ∞}

 stores weight of

a shortest path from to

using at most edges.

dist[v][i]
s v

i

Bellman-Ford: Bottom-Up DP for SSSP

 SSSP(G, s)
 1. , d[1 : n] dist[1 : n][0 : n − 1] = {∞, ∞, …, ∞}
 2. dist[s][0] = 0

 stores weight of

a shortest path from to

using at most edges.

dist[v][i]
s v

i

Bellman-Ford: Bottom-Up DP for SSSP

 SSSP(G, s)
 1. , d[1 : n] dist[1 : n][0 : n − 1] = {∞, ∞, …, ∞}
 2. dist[s][0] = 0
 3. for to i = 1 n − 1

 stores weight of

a shortest path from to

using at most edges.

dist[v][i]
s v

i

Bellman-Ford: Bottom-Up DP for SSSP

 SSSP(G, s)
 1. , d[1 : n] dist[1 : n][0 : n − 1] = {∞, ∞, …, ∞}
 2. dist[s][0] = 0
 3. for to i = 1 n − 1
 4. for v ∈ V(G)

 stores weight of

a shortest path from to

using at most edges.

dist[v][i]
s v

i

Bellman-Ford: Bottom-Up DP for SSSP

 SSSP(G, s)
 1. , d[1 : n] dist[1 : n][0 : n − 1] = {∞, ∞, …, ∞}
 2. dist[s][0] = 0
 3. for to i = 1 n − 1
 4. for v ∈ V(G)
 5. dist[v][i] = dist[v][i − 1]

 stores weight of

a shortest path from to

using at most edges.

dist[v][i]
s v

i

Bellman-Ford: Bottom-Up DP for SSSP

 SSSP(G, s)
 1. , d[1 : n] dist[1 : n][0 : n − 1] = {∞, ∞, …, ∞}
 2. dist[s][0] = 0
 3. for to i = 1 n − 1
 4. for v ∈ V(G)
 5. dist[v][i] = dist[v][i − 1]
 6. for each edge (u, v)

 stores weight of

a shortest path from to

using at most edges.

dist[v][i]
s v

i

Bellman-Ford: Bottom-Up DP for SSSP

 SSSP(G, s)
 1. , d[1 : n] dist[1 : n][0 : n − 1] = {∞, ∞, …, ∞}
 2. dist[s][0] = 0
 3. for to i = 1 n − 1
 4. for v ∈ V(G)
 5. dist[v][i] = dist[v][i − 1]
 6. for each edge (u, v)
 7. dist[v][i] = min(dist[v][i], dist[u][i − 1] + w(u, v))

 stores weight of

a shortest path from to

using at most edges.

dist[v][i]
s v

i

Bellman-Ford: Bottom-Up DP for SSSP

 SSSP(G, s)
 1. , d[1 : n] dist[1 : n][0 : n − 1] = {∞, ∞, …, ∞}
 2. dist[s][0] = 0
 3. for to i = 1 n − 1
 4. for v ∈ V(G)
 5. dist[v][i] = dist[v][i − 1]
 6. for each edge (u, v)
 7. dist[v][i] = min(dist[v][i], dist[u][i − 1] + w(u, v))
 8. for v ∈ V(G)

 stores weight of

a shortest path from to

using at most edges.

dist[v][i]
s v

i

Bellman-Ford: Bottom-Up DP for SSSP

 SSSP(G, s)
 1. , d[1 : n] dist[1 : n][0 : n − 1] = {∞, ∞, …, ∞}
 2. dist[s][0] = 0
 3. for to i = 1 n − 1
 4. for v ∈ V(G)
 5. dist[v][i] = dist[v][i − 1]
 6. for each edge (u, v)
 7. dist[v][i] = min(dist[v][i], dist[u][i − 1] + w(u, v))
 8. for v ∈ V(G)
 9. d[v] = dist[v][n − 1]

 stores weight of

a shortest path from to

using at most edges.

dist[v][i]
s v

i

Bellman-Ford: Bottom-Up DP for SSSP

 SSSP(G, s)
 1. , d[1 : n] dist[1 : n][0 : n − 1] = {∞, ∞, …, ∞}
 2. dist[s][0] = 0
 3. for to i = 1 n − 1
 4. for v ∈ V(G)
 5. dist[v][i] = dist[v][i − 1]
 6. for each edge (u, v)
 7. dist[v][i] = min(dist[v][i], dist[u][i − 1] + w(u, v))
 8. for v ∈ V(G)
 9. d[v] = dist[v][n − 1]
 10. return d

 stores weight of

a shortest path from to

using at most edges.

dist[v][i]
s v

i

Bellman-Ford: Bottom-Up DP for SSSP

 SSSP

 1. ,

 2.

 3. for to

 4. for

 5.

 6. for each edge

 7.

 8. for

 9.

 10. return

(G, s)
d[1 : n] dist[1 : n][0 : n − 1] = {∞, ∞, …, ∞}
dist[s][0] = 0

i = 1 n − 1
v ∈ V(G)

dist[v][i] = dist[v][i − 1]
(u, v)

dist[v][i] = min(dist[v][i], dist[u][i − 1] + w(u, v))
v ∈ V(G)

d[v] = dist[v][n − 1]
d

Bellman-Ford: Bottom-Up DP for SSSP

 SSSP

 1. ,

 2.

 3. for to

 4. for

 5.

 6. for each edge

 7.

 8. for

 9.

 10. return

(G, s)
d[1 : n] dist[1 : n][0 : n − 1] = {∞, ∞, …, ∞}
dist[s][0] = 0

i = 1 n − 1
v ∈ V(G)

dist[v][i] = dist[v][i − 1]
(u, v)

dist[v][i] = min(dist[v][i], dist[u][i − 1] + w(u, v))
v ∈ V(G)

d[v] = dist[v][n − 1]
d

Θ(|V |)

Bellman-Ford: Bottom-Up DP for SSSP

 SSSP

 1. ,

 2.

 3. for to

 4. for

 5.

 6. for each edge

 7.

 8. for

 9.

 10. return

(G, s)
d[1 : n] dist[1 : n][0 : n − 1] = {∞, ∞, …, ∞}
dist[s][0] = 0

i = 1 n − 1
v ∈ V(G)

dist[v][i] = dist[v][i − 1]
(u, v)

dist[v][i] = min(dist[v][i], dist[u][i − 1] + w(u, v))
v ∈ V(G)

d[v] = dist[v][n − 1]
d

Θ(|V |)

Θ(|V | + |E |)

Bellman-Ford: Bottom-Up DP for SSSP

 SSSP

 1. ,

 2.

 3. for to

 4. for

 5.

 6. for each edge

 7.

 8. for

 9.

 10. return

(G, s)
d[1 : n] dist[1 : n][0 : n − 1] = {∞, ∞, …, ∞}
dist[s][0] = 0

i = 1 n − 1
v ∈ V(G)

dist[v][i] = dist[v][i − 1]
(u, v)

dist[v][i] = min(dist[v][i], dist[u][i − 1] + w(u, v))
v ∈ V(G)

d[v] = dist[v][n − 1]
d

Θ(|V |)

Θ(|V | + |E |)

Θ(|V |)

Bellman-Ford: Bottom-Up DP for SSSP

 SSSP

 1. ,

 2.

 3. for to

 4. for

 5.

 6. for each edge

 7.

 8. for

 9.

 10. return

(G, s)
d[1 : n] dist[1 : n][0 : n − 1] = {∞, ∞, …, ∞}
dist[s][0] = 0

i = 1 n − 1
v ∈ V(G)

dist[v][i] = dist[v][i − 1]
(u, v)

dist[v][i] = min(dist[v][i], dist[u][i − 1] + w(u, v))
v ∈ V(G)

d[v] = dist[v][n − 1]
d

Θ(|V |)

Time Complexity:
 Θ(|V | . (|V | + |E |))

Θ(|V | + |E |)

Θ(|V |)

Bellman-Ford: Bottom-Up DP for SSSP

 SSSP

 1. ,

 2.

 3. for to

 4. for

 5.

 6. for each edge

 7.

 8. for

 9.

 10. return

(G, s)
d[1 : n] dist[1 : n][0 : n − 1] = {∞, ∞, …, ∞}
dist[s][0] = 0

i = 1 n − 1
v ∈ V(G)

dist[v][i] = dist[v][i − 1]
(u, v)

dist[v][i] = min(dist[v][i], dist[u][i − 1] + w(u, v))
v ∈ V(G)

d[v] = dist[v][n − 1]
d

Time Complexity:
 Θ(|V | . (|V | + |E |))

Bellman-Ford: Bottom-Up DP for SSSP

 SSSP

 1. ,

 2.

 3. for to

 4. for

 5.

 6. for each edge

 7.

 8. for

 9.

 10. return

(G, s)
d[1 : n] dist[1 : n][0 : n − 1] = {∞, ∞, …, ∞}
dist[s][0] = 0

i = 1 n − 1
v ∈ V(G)

dist[v][i] = dist[v][i − 1]
(u, v)

dist[v][i] = min(dist[v][i], dist[u][i − 1] + w(u, v))
v ∈ V(G)

d[v] = dist[v][n − 1]
d

Time Complexity:
 Θ(|V | . (|V | + |E |))

Modify line 4 to 7 so that this cost becomes only .Θ(|E |)

Activity-Selection

Activity-Selection
Act-Sel:

Activity-Selection
Act-Sel:

Input: Given a set of proposed activities n S = {a1, a2, …, an}

Activity-Selection
Act-Sel:

Input: Given a set of proposed activities n S = {a1, a2, …, an}, where each activity hasai

Activity-Selection
Act-Sel:

Input: Given a set of proposed activities n S = {a1, a2, …, an}
start time and finish time .si fi

, where each activity hasai

Activity-Selection
Act-Sel:

Input: Given a set of proposed activities n S = {a1, a2, …, an}
start time and finish time .si fi If selected, activity takes place during .ai [si, fi)

, where each activity hasai

Activity-Selection
Act-Sel:

Output:

Input: Given a set of proposed activities n S = {a1, a2, …, an}
start time and finish time .si fi If selected, activity takes place during .ai [si, fi)

, where each activity hasai

Activity-Selection
Act-Sel:

Output:

Input: Given a set of proposed activities n S = {a1, a2, …, an}
start time and finish time .si fi

Find a largest-size subset of mutually compatible activities.

If selected, activity takes place during .ai [si, fi)
, where each activity hasai

Activity-Selection
Act-Sel:

Output:

Input: Given a set of proposed activities n S = {a1, a2, …, an}
start time and finish time .si fi

Find a largest-size subset of mutually compatible activities.

If selected, activity takes place during .ai [si, fi)

Two activities and are mutually compatible if either or .ai aj si ≥ fj sj ≥ fi

, where each activity hasai

Activity-Selection
Act-Sel:

Output:

Input: Given a set of proposed activities n S = {a1, a2, …, an}
start time and finish time .si fi

Find a largest-size subset of mutually compatible activities.

If selected, activity takes place during .ai [si, fi)
, where each activity hasai

Activity-Selection
Act-Sel:

Output:

Input: Given a set of proposed activities n S = {a1, a2, …, an}
start time and finish time .si fi

Find a largest-size subset of mutually compatible activities.

If selected, activity takes place during .ai [si, fi)

Assumption: Given activities are sorted in monotonically increasing order of finish time.

, where each activity hasai

Activity-Selection
Act-Sel:

Output:

Input: Given a set of proposed activities n S = {a1, a2, …, an}
start time and finish time .si fi

Find a largest-size subset of mutually compatible activities.

If selected, activity takes place during .ai [si, fi)

Example:

Assumption: Given activities are sorted in monotonically increasing order of finish time.

, where each activity hasai

Activity-Selection
Act-Sel:

Output:

Input: Given a set of proposed activities n S = {a1, a2, …, an}
start time and finish time .si fi

Find a largest-size subset of mutually compatible activities.

If selected, activity takes place during .ai [si, fi)

Example:
 i

si

1 2 3 4 5 6 7 8 9 10 11

fi

Assumption: Given activities are sorted in monotonically increasing order of finish time.

, where each activity hasai

Activity-Selection
Act-Sel:

Output:

Input: Given a set of proposed activities n S = {a1, a2, …, an}
start time and finish time .si fi

Find a largest-size subset of mutually compatible activities.

If selected, activity takes place during .ai [si, fi)

Example:
 i

si

1

1

2

3

3

0

4

5

5

3

6

5

7

6

8

7

9

8

10

2

11

fi

12

4 5 6 7 9 9 10 11 12 14 16

Assumption: Given activities are sorted in monotonically increasing order of finish time.

, where each activity hasai

Activity-Selection
Act-Sel:

Output:

Input: Given a set of proposed activities n S = {a1, a2, …, an}
start time and finish time .si fi

Find a largest-size subset of mutually compatible activities.

If selected, activity takes place during .ai [si, fi)

Example:
 i

si

1

1

2

3

3

0

4

5

5

3

6

5

7

6

8

7

9

8

10

2

11

fi

12

4 5 6 7 9 9 10 11 12 14 16

 is a largest-size subset of mutually compatible activities.{a1, a4, a8, a11}

Assumption: Given activities are sorted in monotonically increasing order of finish time.

, where each activity hasai

Activity-Selection
Act-Sel:

Output:

Input: Given a set of proposed activities n S = {a1, a2, …, an}
start time and finish time .si fi

Find a largest-size subset of mutually compatible activities.

If selected, activity takes place during .ai [si, fi)

Example:
 i

si

1

1

2

3

3

0

4

5

5

3

6

5

7

6

8

7

9

8

10

2

11

fi

12

4 5 6 7 9 9 10 11 12 14 16

 is a largest-size subset of mutually compatible activities.{a1, a4, a8, a11}

Assumption: Given activities are sorted in monotonically increasing order of finish time.

, where each activity hasai

